Estimation with Bayesian Inference
نویسندگان
چکیده
A probabilistic technique for the joint estimation of background and sources in high-energy astrophysics is described. Bayesian inference is applied to gain insight into the coexistence of background and sources through a probabilistic two-component mixture model, which provides consistent uncertainties of background and sources. The present analysis is applied on ROSAT PSPC data in Survey Mode. A background map is modelled using a Thin-Plate spline. Source probability maps are obtained for each pixel (45 arcsec) independently and for larger correlation lengths, revealing faint and extended sources. Source probability maps are combined for two ROSAT PSPC energy bands, hard (0.5-2.0 keV) and soft (0.10.5 keV), and compared with the corresponding source probability maps at the broad energy band (0.1-2.4 keV) and with the ROSAT All-Sky Survey (RASS) catalogues, bright and faint. The probabilistic method allows for detection improvement of faint extended celestial sources compared to the standard methods applied for the realization of the RASS catalogues.
منابع مشابه
Inference of Markov Chain: AReview on Model Comparison, Bayesian Estimation and Rate of Entropy
This article has no abstract.
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملClassical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملBayesian Estimation of Parameters in the Exponentiated Gumbel Distribution
Abstract: The Exponentiated Gumbel (EG) distribution has been proposed to capture some aspects of the data that the Gumbel distribution fails to specify. In this paper, we estimate the EG's parameters in the Bayesian framework. We consider a 2-level hierarchical structure for prior distribution. As the posterior distributions do not admit a closed form, we do an approximated inference by using ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کامل